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RESISTIVE INTERCHANGE MODES IN
REVERSED FIELD PINCHES

I. Introduction

It has long been recognized that reversed field pinches, having unfavorable average curvature

should be unstable to resistive interchange modes for arbitrarily small P and for arbitrarily large m and

n (poloidal and toroidal mode numbers) unless finite Larmor radius effects are taken into account. I.- 2

The theory of gravity driven modes in an incompressible fluid in a sheared field indicates

Y i/ 13 p'q'1213 where Y is the growth rate, 71 the resistivity, P' the pressure gradient and -RB,

However recent numerical results pertaining to the linear and nonlinear behavior of these modes by

Schnack et al. 3 indicate that at low P, the plasma is in fact much more stable than this result would

indicate. We find that a careful analytic study of the theory of resistive interchange modes show that

there are several very important stabilizing effects which are not included in the simple slab model with

gravity simulating curvature and have been ignored in previous treatments in cylindrical geometry.

Most resistive interchange modes are localized to within the singular layer. For these modes, the

effect of compressibility and shear turn out to be strong stabilizing effects. If the plasma compression

term, proportional to r p (an upper case r is used to avoid confusion with the growth rate vf) is not

negligible, the plasma can support a pressure gradient and be interchange stable even in the absence of

shear. This was first pointed out by Bernstein et al.' for a plasma with B. - 0. Also, for B, * 0 there

is some residual shear stabilization which can further stabilize interchange modes in a resistive plasma.

Thus, most of the resistive interchange modes can be stabilized by this combination of compressibility

and shear. The marginal stability condition gives rise to a marginally stable relative pressure profile in a

reversed field pinch.

Manuscript submitted August 27, 1981.
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FiNN AND MANHEIMER

However, if these modes are stable, there is one additional unstable mode which couples to the

plasma outside of the singular layer. This instability exists for any negative pressure gradients. Above

a critical pressure gradient, the growth rate scales as y - (-p,) 3, like a conventional resistive inter-

change mode. Below the critical pressure gradient however, y - (-p')", so that the growth rate goes

to zero extremely quickly as p' -- 0. Furthermore -y scales as IA't- , where A' is proportional to the

jump in the radial derivative of the perturbed radial magnetic field, so that short wavelength modes are

much less dangerous than the longest wavelength (m - 0 and m - 1) modes. For all practical pur-

poses, this critical pressure gradient then defines a marginal stability pressure for this last resistive inter-

change mode.

Section II reviews the equations and scalings for these modes, as originally derived by Coppi,

Greene & Johnson (CGJ). s Section III derives the properties of the localized modes and calculates

relative pressure profiles for a reversed field pinch, using the Bessel function equilibrium model. We

conclude that the marginally stable pressure profile can have a central pressure up to 400 times the

pressure at the walls.

In Section IV we discuss the properties of the mode that couples to the fluid outside the singular

layer. In several limits (high shear, low shear), assuming parameters so that the previously discussed

localized modes are stable, the dispersion relation takes on a very simple form, showing the y - (-p')4

scaling as p'--. 0. We also show that the dispersion relation can be obtained very simply in the low

shear, low pressure gradient limit. We evaluate A' for modes with various toroidal and poloidal mode

numbers nm, using the Bessel function model again and show that, if the pitch parameter is large

enough, the m - 0 modes are the most dangerous. This result was observed in simulations by Schnack

et al.3 We also evaluate the critical P for reversed field pinches. The critical P turns out to be about 7

percent for a magnetic Reynolds number R, - 103 (T, - 10 eV) but lest than one percent for kilovolt

temperatures (R, > 10). The former result agrees with the numerical results of Schnack et al.3 The

critical beta decreases with conductivity because the stabilizing coupling to the outer (tearing stable)

region becomes weaker with increasing conductivity.

2
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il. Review of the Equations & Scalinls

In this section we briefly review the Equations and scaling as derived in CGJ. Outside a small dis-

tance L, away from the rational surface, the ideal MHD equations hold, but within this distance L,,

finite resistivity is important. As we will see, there are some modes which are localized within L, and

which do not couple at all to the outer region. For other modes, there is strong coupling to the outer

region. We will assume that Lr/a - e where a is the radius of the mode rational surface and a is also

assumed to be roughly equal to the scale of variation of the eigenfunction in the other direction perpen-

dicular to B. Since the plasma is assumed to be ideal MHD stable to localized modes (Suydam stable),

the growth rate also scales as e. In this, the so-called glow interchange ordering of CGJ, G also scales as

1/3

In cylindrical geometry, the eigenfunction has the form W(r) exp (y t + im@ + ikz) where in a

large aspect ratio torus k - -nIR. A superscript - denotes a perturbed quantity. The mode rational

surface is determined by

m nq (1)
where q - rB,/ RB@. The operator B • V operating on a scalar is given by

in B, q ,
B • V - (r - a) + 0(r - a)2  (2)

a
and within the singular region is of order e. (We use this form rather than that of CGJ since it applies

also to m - 0 modes, which have their rational surface where B, - 0.)

Since the resistive interchange mode is characterized by nonzero resistivity allowing the fluid to

slip through the sheared field near the rational surface, the mode is mostly fluid flow with only a small

magnetic perturbation. Thus B - e where 1 is the linearized fluid displacement. Since the growth

rate is assumed to be slow compared to the magnetosonic speed, we have

B. A + -0. (3)

3
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Since ,P - -p'j, - rp (V • 9), where r is the specific heat ratio, both C, and (V f) must be of order

t. Thus to zero order the flow is divergence free. However the small compression does play an impor-

tant role in the pressure perturbation. Since B is also divergence free, A, - a is.,

If we define a local coordinate system 1,, _ji, and j - ,x J , where j, + Ji are unit vectors in the

directions of r and . then

(C r +r +Ji. (4)
B ,. + B,, t + Bi (5)

where toL -1 0  ,, E and B 2. The equations for , , and V • to lowest order are

given by CGJ as

+ RBO d, -0 (6)
n B dx

+ 1- -B , 0 (7)
nB dx

BB - p'c + r p (v•) (8)

, - , ineq'8x B1  (9)a

P - Y ,In inBOq'xB, (10)
Rla a

SBe q'x (1)
y a

'Y a
- (p + B)' -,

B

where x - r - a. Equations (6)- (12) are CGJ eqs. (47) - (52) with several slight changes in notation:

we have used q instead of the rotational transform since q is a nonsingular function of r for a reversed

field pinch; we have used - for growth rate and r for specific heat ratio; finally all components of B

and 1 have dimension magnetic field and length respectively.

Equations (6) and (7) set the E° part of V • and V B equal to zero. Equation (8) sets the

perturbed magnetic plus thermal pressure equal to zero. Equation (9) is the dot product of _@ with the

momentum equation. Eq. (10) results from operating on the momentum equation with the operator

4
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V (pIB2x) Coppi, Greene and Johnsons call this the annihilated momentum equation since the

operator annihilated information about propagation along the lines of force (given by eq. (9)) and also

annihilates information about V (B - A + A) (given by eq. (3)). Equations (11) and (12) are the

radial and t components of Ohm's law.

The first two terms of (12) combine to give -B (V1 • fL), the compression of the field due to the

compression of the fluid perpendicular to B. The last term is a combination of two effects. First there

is the convection of B into regions of different B. This gives a contribution to All of

8B1- B V 8)r (13)

Secondly, consider a flux tube at radius in which is incompressibly displaced a distance i,. If the tube

originally has area A, the change in area of the displaced tube is 8 A - - A j,. However since the
r

flux is conserved, then

8 B,, - - B 8 A - (14)

A r

a 2 (15)

The last relation follows from pressure balance. Combining Eqs. (13) and (15) gives the last term in

Eq. (12). The term on the right of (11) is the analog of the first term on the right in (12) or , alterna-

tively, the convection of the helical flux i i r B,.

Equations (8) and (9) give V • and , in terms of the other variables. In the notation of CGJ,

the equations are

'-"Q i' + X E) (16)

Q Q2

Y"-+j12. +2)Y +QS -D-D- JE + 2 X*'(8

where Q - W/,. - f, V l ,'L, X -x/L, Y" -2 and

5
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D-- 2p'a (19)Be2 R 2 q 1

- 2p (a)/B 2  (20)

S- 4/R 2 q1 (21)
1 2a2 1/6

L, 1(22)nl 2 B02 q 2

~2 22 1/31 q  (23)
pa

We have eliminated m, B, and & - 2v/q because in a reversed field pinch the mode rational surface for

m - 0 modes has B, - 0.

As long as there is no coupling to the outer region, the solutions to Eqs. (16) - (18) have either

odd or even symmetry, with the symmetry of * opposite to the symmetry of S and Y.

As shown in CGJ, near marginal stability these modes are localized within a more narrow layer,

with X - Q114, and therefore modes with odd =, even 11 and Y in fact must be treated by tearing ord-

ering. The most important effects of this ordering, where y - '3/ 5, r - rs - q2) and P - i2/5, is that

the first term on the right in (16) can be treated to lowest order as a constant. (This is the constant-O

approximation of Ref. 6.) Also, the first term in the Y coefficient in (18) and the second term in the !

coefficient are negligible.

111. Even ! Modes and Stable Pressure Profiles

In this section we review the even 2 modes.5' 6 For modes of this symmetry it is consistent with

the constant * approximation to neglect the first term of (11) i.e., the first term on the right in (16).

Therefore, Eqs. (17) and (18) decouple from Eq. (16) for *. With tearing ordering (i.e., q21),

Eqs. (17) and (18) become

x2 , Y2 - -g - (24)

Y"- 2- ) Y + Q(S- -k )g. (25)

6
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Following CGJ we expand in Hermite functions F - ,l HIf(z) exp (-z2/2), Y- Y HIf(z)
I I

exp (- z2/2), where z - X/Q1 4.

Making use of the fact that

2- IH,(z) exp - - - (21 + 1) H,(z) exp - z2/2)

one finds for even I two simultaneous equations for EjandY,r

-(21 + 1) S, + Q--zy,. 0

Q312 S D ,+L 2  ) 2Q321~_L_ =1 1' j (26)

which give the dispersion relation

Q32 _ (21+ 1) (27)

The most unstable mode has I - 0; therefore stabiliy to all even E modes is guaranteed if

2D < S + 1 (28a)

or in physical units

2p'a < 4~I..A + (29b)
R 2B02q. 2  B2 I R 2q I

The even 1, modes have 1, and 6 11 entirely localized to a region X < Q 114 inside the singular layer and

do not couple to the plasma in the outer region. To check the validity of the constant * approximation

we need only show a postiori that Q* < < ". Using T" Q/'P12, we find the condition for validity

of the constant * approximation is

0 3/2- D -# << 1 (29)

Notice that unlike a gravity driven resistive interchange in slab geometry', the even S modes in a

cylinder are stable for a pressure gradient below a critical value given by Eq. (28b).

7
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This critical pressure gradient can be related to previous work 4 on the ideal MHD stability of a

compressible diffuse pinch with B, - 0. According to Bernstein et al.4, a diffuse z pinch, which has

unfavorable curvature everywhere, is stable to a pure interchange mode only if

- + Li> 0 (30)

V' rp
where V' is proportional to the flux tube volume riB#. Thus, increasing !' p (i.e., compressibility) has a

stabilizing effect. It is not difficult to show that (30) is proportional to the factor S - D(2/re + I) of

Eq. (18) if B, - 0 is assumed. The third term in this factor is necessary because 0 must be of order

unity if B, - 0.

Increasing B, has both stabilizing and destabilizing effects on even E modes. The destablizing

effect, given by the factor r" p/B 2 in (28b), is due to the fact that large B, implies incompressibility (but

without C,2 - F p/p - oo) so that no work is done in compressing the plasma. The stabilizing effect of

increasing B, is that this may increase the shear [represented by the second term on the right of Eq.

(28a) or Eq. (28b)].

To get an idea of the stable pressure profiles in a reversed field pinch, we have computed the mar-

ginal pressure profile from Eq. (28b) for a Bessel function model

B,- Bo Jo(itr) (31)

Be - Bo J, ( r).

This is the magnetic field produced by the plasma if it relaxes to minimum energy state while maintain-

ing constant helicity', giving V x B - j B. Although the field given by Eq. (31) is force free, it

should still be a good approximation to the field structure in a low 3 plasma. If the quantity r. is the

wall radius, the range of 1A of most interest to a reversed field pinch is

2.4 < i r< < 3.1,

the former value being the value required for field reversal, the latter required for tearing mode stabil-

ity.s
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Since Eq. (28b) gives pYp it gives only relative, not absolute, pressure profiles. Thus, if the

boundary condition is p (r.) - 0, there must be an unstable region somewhere in the plasma. In Fig.

(1) are shown plots of relative pressure profiles for five different values of A. Clearly as A increases,

the pressure at the center can become quite large compared to the pressure at the walls. For instance at

- 3.1, just below the threshold for tearing mode instability, the pressure at the center is more than

400 times the pressure at the wall. It is of interest to note that the toroidal factor H of Ref. 9 [eq.

(13)] is zero for toroidal equilibria which satisfy V x B - M B with 14 - j B8B2 constant.

IV- Odd B Modes-The Maximum Stable Pressure

In the previous section we have seen that if the pressure gradient is smaller than that given by Eq.

(28a or b), then the even _H modes are stable. One might also think odd I- modes stable also since

they have larger L However, since S has odd symmetry, 4I has even symmetry, so it can couple to the

outer MHD stable region through the (constant) value of *. This allows for the presence of one

unstable mode even if (b) is violated.

The inner region equations for odd E modes are

S" - Z2 =+ Q- 312 y Q-1 4 z 0  (32)

Y" - z 2y - Q31 2 (S - 2D/r#)

- 2Q312 y/FIr - DQ- 1/ 4z I0. (33)

Henceforth, we assume that the even = modes are stable, i.e., S - 2D/F/# > - 1. Earlier refer-

ences 5
.6 have shown that this equation can be analyzed by expanding in Hermite functions and express-

ing the resulting series as a hypergeometric series. In the incompressible limit 2D/Fj3 - 0, we find, as

in Refs. 5, 9,

4,r 2 (Q 514 
- ir D/4Q'/4). (34)LA'- IF (1/4)1 -IF

where A'- [84/8r (a+) - 81/O/r (a-)]/4 (a). In the limit S >> I (in which 2D/ro need not be

small, and which corresponds to the low shear limit) we find

9
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4' ! (QS14o It'- D 1Q' /4). (372A DQ1, (35)

where r - S - 2D/170.

In the Appendix we show that it is possible to find a simple closed-form solution to (32), (33) in

this latter limit. In fact, we find

(z) - °Q- 114z (D/Q312 + z2 ) (36)z + a* 36

We are also able to obtain (35) exactly.

It has been shown by using Nyquist analysis that equations of the form (34) or (35) always have

one root in the right half Q plane.9 A simple graphical analysis shows that this root is pure real. If

'> 0, D << 1, the A' balances the Q514 term on the right hand side of eq. (34) to give the conven-

tional tearing mode dispersion relation. On the other hand, if &'- 0, one easily calculates from (34)

Q - (ir D/4) 213 , the conventional result for a resistive interchange mode. Using (35) we obtain a simi-

lar result Q - D2 3/1b ". The most interesting limit, however, is for A' negative and either 1A'l >>" I

or D << 1. In this case (34) gives

Q - 7.7 (D/LA') 4. (37)

This growth rate goes to zero very rapidly as D - 0. The result complements that of Glasser. Greene

& Johnson', who show that coupling to favorable average curvature can stabilize a tearing mode. Here

we show the converse, that coupling to large, negative &' can substantially reduce the growth rate of a

resistive interchange mode. The growth rate goes to zero so rapidly with D that we can consider the

transition point from D 2/ 3 to D 4 behavior, namely D, - .52 (- L, 4)5, to be an effective critical beta

for the mode. Using (35) the corresponding results are Q - (24/cr) (DIL,A')4 and

D- .38w's(- L,A)S 5. Note that (37) gives y - p, 4/ q'6 whereas the a - o result gives

, - P 41,9 q 4. In both cases Y 71

10
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In physical variables the critical pressure gradient obtained from D, is

- dp/dr - (B2 R 2 q'2/4) (- A'L,)1  
(38a)

- (B2 R 2 q'2/4) (- 6 ')6'5  2q2 (38b)n2q.2 B 8,(8b

Note that, for plasma near the critical/3 for low m.n modes, modes with larger m,n have a much smaller

growth rate since Q scales as (4,)4 and since A' - - n for n - - . In particular, since Q, - n2/ 3, we

have y - n-10/3 as n - o. Another way of expressing this is to note that the critical pressure gradient

scales as n415 for 4arge n. Note that the critical pressure gradient scales as 7)V5. This is as expected,

since it is tearing ordering with/3 - 'q2/ 5 that makes the three terms of (34) or of (35) comparable.

For the force free Bessel function model B,- B0 J, (is r), B, - B0 J0 (,A r), we can easily

compute A' analytically. This is possible because the outer region equations for this equilibrium are

merely V x h - As , with the same value of A as the equilibrium. (Recall from Sec. II that toroidal

generalizations of such equilibria have the toroidal term H of Ref. 9 equal to zero.) In this model field

reversal occurs if Ai r. > 2.4 (r, is the plasma minor radius) and an m - I tearing mode is unstable if

u r. > 3.1. In Fig. 2a we show the maximum value of 4'r, (over 0 < m < 5, -25 < n 4 25) as a

function of r for p r. - 2.81. Fig. 2b shows the maximum of A'r over n for various m, as a function

of OA r,. These results show that for 2.4 < t r. < 2.83, the m - 1 mode with n > 0 (i.e., with mode

rational surface inside the field reversal point ) has the largest A'. The m - I mode with largest A' has

n r /R "- 2, which has the effect of putting the mode rational surface as far from the walls and from

the origin r - 0 as possible. For 2.83 < A r. < 3.1, however, the m - 0 mode (which has its mode

rational surface at the field null IA a - 2.4 regardless of n) with n - ± 1 has the largest value of A'.

We also observe that an m - I tearing mode with n < 0 (i.e., with mode rational surface outside the

field null) becomes unstable (i.e., A' > 0) foris r. > 3.1, in agreement with previous studies '
s

Putting A'- -4, we find the critical D for m - 0 modes to be approximately D, - 3 R,V -, where

R, is the magnetic Reynolds number. For R. - 103, as in Ref. 3, we find D, - 20 percent. For

R.- I0, we find D, - 3 percent. For the marginal equilibria of Sec. Ill, we have / - D/3, giving

p .,
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critical equal to 7 and one percent, respectively. The former result is in agreement with the simula-

tions of Schnack et al.3

In summary, we find that matching to a tearing stable exterior region (i.e., with A' < 0) decreases

growth rates for the resistive interchange sufficiently that below a critical value of the Suydam parame-

ter D, the growth rate scales as D4 and is therefore quite small. We also find that in this regime, the

growth rate y scales as IA' - 4, so that for very short wavelength modes (n - -c), y scales as n- 1013.

From a calculation of A' from the outer region, we find that the most unstable mode is either an m - I

mode with n r,/R -- 2 or an m - 0 mode with n - ± 1. The above results, notably the abrupt

dropoff in growth rate for small D, the decrease in growth rate for large n and the predominance of the

m - 0, m - 1 modes, are in agreement with the numerical simulations of Schnack et al. 3
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APPENDIX

ODD MODES FOR S > >1

In this Appendix we show that if r m S - 2D / r P > > 1, the eigenfunction in the inner region

can be obtained analytically from (32), (33). We first note that in this limit, the fourth term on the left

of (33) is negligible. (In fact this can be shown a posteriori). The resulting equations can be combined

simply to give a single second order equation in terms of a complex variable.

y"' IQ3/2 ("1/2 + y, (AI1)

namely

1'- z 2 y + ji' 1/2 y 8z, (A2)

where

8 - (iQ3/2 r 1/2 + D) 'W, Q-/ 4 . (A3)

For a > > 1, solutions having Y - Y(z/cr 1/4) have the first term in (A2) of order a, relative to

the third term for all z. Therefore, to lowest order in a - we have

8z
z 2 - pj

1 1 2  (A4)

Note that in this limit the radial component of inertia and the resistive term from (12) are small but

the parallel component of inertia and resistive term from (11) are kept.

To next order we obtain the correction

32z(z2 + 3io"1/2)
"- (z2 _  , 1/2)4 (A5)

Using the lowest order term (A4) we obtain, from (Al)

--3/2--1/2 IM y - z'°oQ-1 4(DQ-12 + zZ) (A6)Z4 + g

13
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From this we obtain

L,.~&~- . f dz[o + Q/'zE (z)ld (A?)iIo

or

SA 1/4 Q 4 - Do,I 1/4Ql/4J, (AS)

which is exactly (35). For S > > I and 2D/10-1, Q312 is bounded by D/S"12, so the third and

fourth terms of (33) are in relation S: Q312/D [ using (32)] or S :S I12 . This proves that the approxi-

mation discussed in the first paragraph of this appendix is valid.
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FINN AND MANHEIMER
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Fig. 2a - maximum value of A' 'k over 0 m <n 5, -25 <, n < 25, as a function of r. forj ,t 2.81.
The symbols 0, A. and 0 refer to mn - 0, mn - I and mn - 2 modes, respectively. The aspect ratio

Rr, E tE- is S. For E smaller the spacing between mode rational surfaces would be smaller.
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